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MoMath is pleased to acknowledge the support of the
Alfred P. Sloan Foundation in the creation of Math Midway 2 Go, and the support

of the PSEG Foundation in the creation of the accompanying curriculum.

My fascination with energy started at a young age.

The Arab oil embargo of the 1970’s sent gasoline prices through the roof and made clear how closely 
tied our country’s foreign policy is to oil interests. I began wondering whether we could produce 
energy in ways that didn’t involve oil, and I wanted to be part of the quest to find the answer.

That passion led me to pursue years of study in the fields of physics and engineering. Graduate degrees 
in those areas allowed me to take on a variety of fascinating assignments in my career. I served as a 
research scientist at the Princeton Plasma Physics Lab, a Congressional Science Fellow in the office of 
U.S. Senator Bill Bradley, and a science, energy, and technology policy advisor to Governor Tom Kean 
before coming to PSEG where I work every day to create and deliver power responsibly.

This curriculum, developed by the Museum of Mathematics and funded by PSEG, is intended to help 
young people develop an interest in math and the technical fields–to spark curiosity, stimulate inquiry, 
and help students down a path of discovery that leads to fulfilling careers.

As issues such as climate change, energy independence, and national security demand increasingly 
comprehensive and technical solutions, the need for people with knowledge in science, technology, 
engineering, and math–areas known as the STEM subjects–will continue to grow. 

At PSEG, we understand that our country’s future depends on developing the insights, creativity, and 
dynamism of the next generation of innovators. This curriculum is one of many investments we’ve 
made in an effort to help young people discover their talents and develop a thirst for knowledge. 

A math- and science-savvy workforce will lead the way to innovative technological discovery, a 
strengthened economy, and thriving new industries. And it is an important part of building a talent 
pipeline for the energy industry and our country as a whole. 

Ralph Izzo
Chairman, CEO and President, PSEG

A Letter from the PSEG Foundation
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Math Midway 2 Go (MM2GO) consists of six interactive mathematics exhibits that 
can travel to schools and other venues. Hands-on activities captivate and engage 
students, highlighting the wonder of mathematics. These exhibits were designed 
for use with individuals of all ages, and the mathematical topics they address range 
from topics in the elementary classroom to college-level mathematics. Students of 
all ages will benefit from open exploration of the exhibits. At the same time, the 
exhibits also tie into specific curricular topics for kindergarten through grade 12. 

These lesson plans are provided by MoMath to support teachers like you. To help 
you and your students make the most of your time at Math Midway 2 Go, a focus 
exhibit has been selected for each grade from kindergarten though grade 12. The 
Calculus focus exhibit is the Roller Graphicoaster.

MM2GO is designed to accommodate one class of up to 36 students at a time. 

It is ideal to have only a small group of students at each exhibit while visiting Math 
Midway 2 Go. Break your class into six groups and have them rotate through the 
exhibits, with one group at each exhibit at a time. Before starting, make sure that 
students understand basic rules for interacting with the exhibits: 

 Walk in the area surrounding the exhibits; don’t run.
 Handle the exhibits gently.
 Do not hang or lean on the Number Line Tightrope.
 Handle Ring of Fire shapes gently.

Ideally, school support staff and/or parent volunteers will be available for the 
duration of the visit to Math Midway 2 Go. These adults can circulate throughout 
the exhibits, while the classroom teacher remains at the focus exhibit. At the five 
exhibits that are not the grade-level focus, students can explore and play.

4

General Instructions for Math Midway 2 Go
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Information about the Roller Graphicoaster

About the exhibit:
The Roller Graphicoaster is a model roller coaster with an 
adjustable track. Students attempt to discover the shape of 
the track that will produce the shortest time for the roller 
coaster car to slide from a fixed starting point to a fixed 
ending point. Students can try one of the suggested curves 
(a straight line, a parabola, a cubic curve, a sine curve, a 
circular arc, or a cycloid), or design their own track shape 
from scratch. Older students can use calculus to analyze 
the problem, while younger students can focus on intuition 
and experimentation to figure out which qualities make 
the fastest coaster.

Why visit the Roller Graphicoaster?
The Roller Graphicoaster is based on a math challenge first 

proposed by Galileo Galilei in the 17th century–what is the 

fastest path from one point to another under the influence 

of gravity? Galileo was unable to solve the problem, and it 

remained unsolved until the invention of a new field of math called the “calculus of variations” 60 

years later.

The Roller Graphicoaster is thus a fascinating entry point into the world of calculus. It is a problem 

unsolvable without calculus, which provides an excellent example to students of the importance of 

calculus as an analytical tool. Moreover, students will see how careful analysis of a problem can 

lead to a surprising but beautiful answer. 

The Roller Graphicoaster is an engaging addition to any calculus course, allowing students to 

pursue the study of calculus through a historical problem which is engaging and easy to under-

stand, but which leads to significant mathematical ideas in the search for a solution. 
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Integrating MM2GO Into Your Unit Plans

Consider the following key questions, class topics, and elements of the Common 
Core State Standards when considering how to link the Roller Graphicoaster to the 
study of mathematics taking place in your classroom.

Key questions inspired by the Roller Graphicoaster:

 Are shortest paths always fastest paths? When, and why, is the fastest 
 route between two points not a straight line? What does our intuition tell 
 us about fastest paths, and how can we learn to better predict them?
 Which physical factors cause acceleration and deceleration? How can we 
 account for those changes mathematically?
 How can calculus be used to minimize important quantities in solving 
 physical problems?
 How were the techniques and ideas of calculus developed? What 
 motivated the mathematicians who developed calculus? 

This lesson plan will be useful with the following classes:

 Calculus classes exploring maximization and minimization problems
 Calculus classes studying the history of calculus
 Physics with calculus classes exploring optimization problems, physics 
 history, and motion under the influence of gravity

Learning Standards
HSF-BF: Build a function that models a relationship 
between two quantities and build new functions from 
existing functions.
HS: Modeling

Standards for Mathematical Practice
Make sense of problems and persevere in solving them.
Reason abstractly and quantitatively.
Use appropriate tools strategically.
Attend to precision.

Relevant connections to the Common Core State Standards:
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Roller Graphicoaster Pre-Activity

Materials
Attached Speedy Paths sheet, one copy per 
student 
Attached Linear Laser or Cycloid Cyclone? sheet, 
one copy per student 

Key Terminology
Minimization
Piecewise linear approximation
Distance
Time
Velocity
Acceleration

Description
In this activity, students will preview the tracks of the Roller Graphicoaster, realizing that integration
is  a tool that can be used to accurately predict the total time it will take for a roller coaster to travel along
a given path. 

This pre-activity is specifically designed for students who will have access to the Roller Graphicoaster,
part of the Museum of Mathematics’ Math Midway 2 Go.

Conducting the Activity
Distribute the Speedy Paths sheet to students. Give students several minutes to 
work independently on the sheet and several minutes more to discuss their 
responses with their neighbors. As the students work and discuss their ideas, 
encourage them to try to come to consensus among themselves about the order of 
the tracks. Encourage them to consider what gets the roller coaster moving in the 
first place, how different curves in the tracks will change the speed of the roller 
coaster, and which tracks are the shortest paths.

As a class, discuss responses to the questions on the sheet. Have the students 
present both how they ordered the tracks and their unique design for a speedy 
track. Discuss similarities and differences in the arrangements that students made 
and the trouble they had in coming to agreement when they discussed the sheet 
with their neighbors.

1.

2.
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Roller Graphicoaster Pre-Activity (Continued)

Focus the discussion on quantities that could be minimized when building a roller 
coaster track. One quantity is distance. Which track minimizes distance? (The 
linear track does.) Another quantity is time. Does the track that minimizes 
distance necessarily also minimize time? (No, it does not.) Ask students to think of 
a specific situation in which the path of least distance is also the path of least time. 
Ask students to think of situations in which the path of least distance would not be 
the path of least time.

If students are having difficulty coming up with examples, here are some factors you 
can ask them to consider. One factor is how difficult the terrain is. If you could 
decrease the length of the path through the difficult terrain, while also increasing the 
length of the path through easier terrain, could your travel time decrease, even if the 
total length of the path increased? Have students come up with other examples of 
how factors other than distance affect time.

Tell students that they are going to do some calculations that will compare two of 
the tracks–the linear track and the cycloid track. First, as a group, compare these 
two tracks for qualities that seem important. Which is the shortest? (The linear 
track is.) For which will the cart be moving the fastest in the same amount of 
distance? (The steepest track, which is the track with the greatest negative slope.)

Distribute the Linear Laser or Cycloid Cyclone? sheet. Tell students that they are 
going to calculate which of these two tracks minimizes time. Point out the equa-
tions at the bottom of the sheet:

     

For your reference, an answer key is attached to help support students through the 
activity. 

3.

4.

5.



6.

8.
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Roller Graphicoaster Pre-Activity (Continued)

Review the concept and purpose of an equation–an equation is made up of 
variables and constants, and shows how the variables are related to each other. 
It also allows you to find the unknown value of one variable if you know the values 
of the others. 

Read the first equation and go over the meaning of the terms. Explain that vi 
stands for the initial velocity; vf stands for the final velocity at the end of the track 
(the velocity immediately before it hits the end bumper).

Then, explain that t stands for time and d stands for distance traveled. This first 
equation can be used to calculate the time it will take an object to travel a particu-
lar distance, as long as it is moving with constant acceleration.

Read the second equation. This is used to calculate the velocity an object will 
reach after it has fallen a particular height. Make sure that students recognize the 
variables that are repeated. Explain that g stands for acceleration due to gravity 
and h stands for the height that an object has fallen: h is positive if the object has 
moved down, or negative if it has moved up.

Explain to students that physicists developed these equations using the tools of 
calculus, and that students will likely study the origins of these equations in a 
physics class. 

Alternately, you can derive these equations with the students as an extension to this 
activity. The first holds for any motion under constant acceleration. The second holds 
for any motion subject only to acceleration due to a uniform gravitational field.

Finally, there is a scale at the bottom of the page. It says ____ inches : ____ feet. This 
is a scale that allows you to measure lengths on the page in inches and convert 
them into the number of feet in the actual roller coaster of the Roller Graphicoaster.

9.

10.

11.

7.
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14.
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Roller Graphicoaster Pre-Activity (Continued)

At this point, work with students to go over how they will use the equations to 
calculate the time it takes for the cart to travel the straight track. Make sure that 
students understand that they will use the second equation to calculate vf  and 
then use that and the other known information to calculate t in the first equation. 
Do not calculate the time yet.

Now, you will examine the Cycloid Cyclone. Point out the overlay on the cycloid 
curve. It has been approximated by several line segments. This is called a piece-
wise linear approximation. Ask students why we need a linear approximation to 
find the time it takes for a cart to travel the cycloid curve. Analyze the equations. 
The second equation allows you to calculate the final velocity of the cart from its 
starting velocity, after it has fallen a specific distance. However, to use the equation 
in that way, one must have a quantity to insert for distance fallen. On the cycloid 
curve, the distance fallen is continuously changing as a function of the horizontal 
distance. For each constant horizontal distance, the cart will fall a different 
amount depending on where it is along the track. Therefore, to use this equation, 
we need to break the curve into linear pieces. 

Now give students an opportunity to compute the times it will take for a cart to 
travel the straight track and to travel the linearly approximated cycloid track. 

At the end of class, share results and reactions. Are the results surprising? Which 
track is faster, the straight line or the cycloid? Why?

Ask students, how did making those linear approximations affect the accuracy of 
the calculations? How could we make the calculations more accurate? Be sure to 
bring out the idea that by making the linear sections smaller and smaller, we could 
get more and more accurate answers, and that in calculus we take the limit as the 
pieces become infinitely short to obtain the exact answer. For a further challenge, 
you can discuss whether the calculated time to travel the linearly approximated 
path is greater than or less than the actual time to travel the cycloid.

15.

16.

13.
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Roller Graphicoaster Pre-Activity (Continued)

1.

2.

3.

4.

5.

Finish the class by explaining to students that they will be able to interact with the 
physical Roller Graphicoaster during their visit to Math Midway 2 Go, and that they 
will be able to test out these two tracks.

Extension
Work with your students to derive these and other motion equations, as 
mentioned above.

Read about Galileo’s experiments with objects falling along tracks. He did 
precisely these calculations, and made interesting–but ultimately incorrect-
conjectures about the shape for the fastest possible track. Discuss why not having 
access to calculus limited his ability to solve the problem. Here is a procedure you 
can follow with your class, to use calculus to explore Galileo’s guess for the 
optimal track:

For this exploration, we will consider tracks that start at the origin, and end at 
(5, -5). Galileo guessed that the shape of the fastest track would be a circular arc, 
so draw a quarter circle with ends at (0,0) and (5,5).

Approximately calculate the y-coordinates of Galileo’s track at x = 1, 2, 3, and 4, 
respectively.

Draw the piecewise linear approximation of Galileo’s track going through the 
points calculated in the previous step.

Use the technique of the main activity to compute the amount of time an object 
will take to fall along the piecewise linear track to reach (5,-5).

Now, we are going to use calculus to see if we can do any better. Imagine bending a 
linear track from (0,0) to (5,-5) at just one point, with x-coordinate 1. In other 
words, in the first approximation, your track will consist of just two linear pieces: 
one from (0,0) to (1,a), and another from (1,a) to (5,-5).

17.
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Roller Graphicoaster Pre-Activity (Continued)

Write down a formula in terms of a that yields the length of time it will take an 
object to fall from (0,0) to (5,-5) on this two-piece track.

Use your calculus techniques to find the value of a which minimizes the time 
required. Let A be the resulting optimal point to put one bend in the track.

Now, considering the point A fixed, we can refine the track further: we will put a 
second bend at a point (2,b) with x-coordinate equal to 2. Once again, create a 
formula which gives the time required to fall from A to (5,-5) in terms of that 
coordinate b.

Find the value of b which minimizes the time, and call the resulting point B.

Repeat this process with x-coordinates 3 and 4 to find points C and D which 
minimize the time required to fall from B to (5, -5) and from C to (5,-5), 
respectively.

Plot your points A, B, C, and D on the same axes as you drew the quarter-circle in 
the first step, and connect successive points with line segments. Calculate the total 
time it takes to fall from the origin to (5,-5) on this new track, and compare it to the 
total time you computed for the linear approximation to Galileo’s track.

Do you think that Galileo’s guess, that the fastest track is a circular arc, could be 
right?

6.

7.

9.

10.

11.

12.

8.
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Roller Graphicoaster Activity

Materials
Attached Roller Graphicoaster Recording Sheet, 
one copy per student 
Pencils
Optional: clipboards

Key Terminology
Distance
Velocity
Acceleration
Gravity
Equation

Description
In this activity, students will explore the Roller Graphicoaster, testing their conclusions about the speed of 
the various tracks. 

Conducting the Activity
Pass out the Roller Graphicoaster Recording Sheet. Ask students–which track do we 
expect to be fastest based on our pre-activity investigation? Charge students with 
testing three tracks–the Linear Laser, the Cycloid Cyclone, and a third track of 
their choice. 

Give students time to explore the exhibit. Make sure that each student sets the 
Roller Graphicoaster track at least once. In their small group, students can share 
results until they have times for all six tracks.

At this point, gather students to discuss their results. Ask them what happened-
which track was the fastest? Which was the slowest? Did the order of tracks match 
up with their predictions? What was surprising? What happened as expected?

If students have results that do not have the Cycloid Cyclone as the fastest track, 
discuss why that might be the case. Please be certain that your students press 
gently on the starting button; banging on this button will affect the times reported 
by Roller Graphicoaster. Talk about experimental error. Another factor to consider 
is friction–how does this affect the track?

1.

2.

3.

4.
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Roller Graphicoaster Activity (Continued)

Collect the times of all of the runs with a given track shape and talk about how 
averaging the results of multiple trials can reduce the effect of experimental error. 
Now does Cycloid Cyclone appear to be the fastest? 

If there is remaining time, allow students to continue testing the Roller Graphi-
coaster. Can any student make a track faster than the Cycloid Cyclone?

Conclude by explaining to students that you will be analyzing the math of the 
Roller Graphicoaster back in the classroom. 

5.

6.
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Roller Graphicoaster Post-Activity One

Materials
Roller Graphicoaster Recording Sheet, with times 
recorded while visiting MM2GO
Attached Fetch! sheet, one copy per student

Key Terminology
Minimization
Distance
Velocity
Time
Acceleration
Derivative

Description
In this activity, students will review their results from the Roller Graphicoaster and analyze what makes the 
Cycloid Cyclone track so fast, focusing on maximums and minimums. 

Students will need data from visiting the Roller Graphicoaster to complete this activity. To conduct this 
activity, your class should be familiar with the process of solving maximization and minimization problems.

Conducting the Activity
Have students discuss the following questions with a partner. Make sure students 
use the data they collected while visiting the Roller Graphicoaster. 
 Which Roller Graphicoaster track was the fastest? Describe some 
 characteristics of the track that you remember. What characteristics do 
 you think contributed to making it the fastest track? What about this track 
 is expected? What is surprising?
 Which Roller Graphicoaster track was the slowest? Describe some 
 characteristics of the track that you remember. What characteristics do 
 you think contributed to making it the slowest track? What about this 
 track is expected? What is surprising?

Gather students together as a class and share findings, observations, and reactions 
from the visit to the exhibit. 

1.

2.
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Roller Graphicoaster Post-Activity One (Continued)

As a group, focus on the Cycloid Cyclone. This is an example of a cycloid curve. 
Ask the class what they notice about this curve. Then, have a discussion about its 
shape. One of its most notable qualities is that it is very steep at the start, but then 
becomes gradually less steep, and even takes on a positive slope at the end. Explain 
to students that because of gravity, the cart is continuously accelerating, albeit less 
as the track flattens out, until it starts to climb back up the hill. Throughout its 
journey, the velocity of the cart changes continuously in response to this varying 
acceleration. This is challenging to model using mathematics, and requires 
advanced calculus to fully describe. However, one element of this problem will be 
familiar to students early on in their study of calculus. 

Distribute Fetch! worksheet. 

Together, read the question posed. Ask students, what is a path that Franklin could 
take that seems likely to be the fastest route? Can you identify a path that is 
unlikely to be the fastest? Why? 

Give students some time to think on their own, and then take suggestions. Make 
sure students consider running straight to the water’s edge, and then swimming 
toward the ball (shortest running distance path), running and swimming always 
directly toward the ball (shortest distance case), and running diagonally all the 
way across the beach to reach the water’s edge right in front of the ball, and then 
swimming to the ball with no change in x-coordinate (the shortest swimming 
distance case). 

Ask students, how can we find the path that takes the least time? We need a 
function that expresses the time it takes Franklin to travel from start to finish in 
terms of the path he travels. Set up this function together, as a class. What should 
the variable be–or, phrased differently, what attribute of the path do we want to 
vary? Discuss this. It makes the most sense to vary something about how Franklin 
travels across the beach before jumping into the water. In particular, focus on the 

3.

4.

5.

6.

7.



8.

17

Roller Graphicoaster Post-Activity One (Continued)

point J where Franklin jumps into the water. What is the fastest path for Franklin 
to take from his starting location to J? (Answer: a straight line.) And what is the 
fastest path for Franklin to take from J to the ball? (Again, a straight line.) There-
fore, we can figure out Franklin’s entire path, just from knowing J. So let’s make 
our variable be a, the horizontal coordinate of the point J, which is also the 
horizontal distance Franklin travels on the beach. We know the vertical coordinate 
of the point J is six. What else will we need to know in order to find the function 
t(a) giving the total time Franklin takes in terms of this variable a? How are 
distance, velocity, and time related?

As a framework for students’ efforts, set up the general equation:

t(a)=time on beach + time in water 

t(a)=(distance on beach)/(speed on beach) + (distance in water)/(speed in water) 

Do not fill in the details–students can do that part on their own as you circulate to 
look over their work and answer questions that may come up.

Next, ask, how will we minimize time? Recap the process of taking the derivative 
of the function, setting it equal to zero, and then testing if the point is a maximum, 
minimum, or inflection point. If your class uses graphing calculators, students can 
check their results by graphing the functions, and then using the “minimum” 
operation on the calculator to verify the result they obtained by the process that 
uses the derivative. 

Due to the extreme difference in the two rates that Franklin travels on land and in 
water, it may be tricky to find good ranges for the x and y axes for this graphing task. 

Have students complete the problem on their own or with a partner. As they work, 
circulate around the room taking questions and troubleshooting. 

10.

9.
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Roller Graphicoaster Post-Activity One (Continued)

If students finish early, ask them to set up the problem given a general speed 
running on the beach r and a general speed swimming in water s. Ask them to 
examine this equation to answer the following questions – What does the equation 
tell us will happen if Franklin swims faster than he runs? (Then, he would swim a 
greater distance than he would run.) What if his swimming and running speeds 
are very similar? (Then, he would go in a nearly straight path.) What if they are 
drastically different? How does the distance he should run before jumping into the 
surf change as the difference in speeds increases and decreases?

Go over the problem and share results. Do these results make sense? What about 
them is reasonable? What about them is surprising? 

Then discuss how this problem relates to the Roller Graphicoaster. For the Roller 
Graphicoaster, the portion of the track at the beginning is like the dog swimming in 
the ocean, because the cart is traveling more slowly. Its velocity has yet to increase 
significantly as gravity has been acting upon the cart for only a short time. This 
means that the track should not travel horizontally very much at this part of the 
trip; instead, it should travel nearly vertically to accelerate rapidly. Once it picks up 
speed, however, it is like the dog on the beach – the cart is already traveling quickly, 
so it is speedy to move horizontally now, and so the path of the cart should bend to 
be more horizontal.

Extensions
Read an article from the Mathematical Association of America entitled “Do Dogs 
Know Calculus?” The article describes a problem similar to the Fetch! problem. 
The author, a mathematician, uses experiments to model how his dog runs after a 
ball. You can access a copy of the article here: 
http://www.maa.org/features/elvisdog.pdf. 

11.

12.

13.
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Roller Graphicoaster Post-Activity One (Continued)

Study the history of the brachistochrone problem, the problem that the Roller 
Graphicoaster is designed to illustrate. The term “brachistochrone” means the 
curve along which it takes the least time to travel. A good source for interesting 
and accessible reading about this problem is the book The Best of All Possible 
Worlds: Mathematics and Destiny, by Ivar Ekeland.

Learn more about the cycloid curve. The cycloid is the graph of the path a point on 
the outside of a circle takes as the circle rolls. Its equation can be derived from this 
property.
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Roller Graphicoaster Post-Activity Two

Conducting the Activity
Share results and observations from the Roller Graphicoaster visit. Which track 
was the fastest? Which was the slowest? What about the results was predictable? 
What was surprising?

Explain to students that the problem of constructing the track that a cart could 
travel in the least time was a problem that baffled the most accomplished math-
ematicians for years. Galileo Galilei was one of the first to ask the question of 
what curve makes the fastest path–or which curve is the brachistochrone. He did 
the calculations that we did during the pre-activity, and from these results, conjec-
tured that the brachistochrone was an arc of a circle. (What about this guess is 
appealing and makes sense?) But it was not for at least fifty more years that 
another mathematician–Johann Bernoulli–proved Galileo wrong and found the 

2.

1.

Materials
Graph paper
Rulers
Attached Cycloid Cyclone Investigation sheet, 
one copy per student

Key Terminology
Distance
Velocity
Acceleration
Gravity
Equation
Brachistochrone

Direct variation
Indirect variation
Slope
Cycloid

Description
In this activity, students will review their results from the Roller Graphicoaster and analyze what makes the 
Cycloid Cyclone track so fast, learning about math history and the brachistochrone problem.

Students will need data from visiting the Roller Graphicoaster to complete this activity.

Key People
Galileo Galilei
Johann Bernoulli
Willebrord Snellius
Ibn Sahl

“Snell’s Law”
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Roller Graphicoaster Post-Activity Two (Continued)

real brachistochrone. To solve this problem, Bernoulli needed discoveries made in 
physics and mathematics–namely, calculus, which was invented to answer 
questions much like this one–that didn’t exist in Galileo’s time. One such discovery 
was about the refraction of light, made first by the Persian physicist Ibn Sahl in the 
10th century, but unknown in Europe until rediscovered by the 17th century Dutch 
physicist Willebrord Snellius. “Refraction” is what happens to a light ray when it 
passes from one substance into another, such as from air into water. Ibn Sahl and 
Snellius found (in essence) that when light passes into a new substance, or 
medium, the new path it takes minimizes the time it takes for the ray to propagate 
by following something now typically called “Snell’s Law.” Bernoulli realized that 
Snell’s Law actually applies to this problem: consider the cart traveling on a track 
to be similar to light passing through a medium, and the effect that gravity has on 
the cart as being similar to the effect that the change in medium has on light.

Bernoulli then showed that the curve made by the Cycloid Cyclone is the curve 
that follows Snell’s Law–so it is the fastest track!

Explain to students that we’re going to show that the Cycloid Cyclone follows 
Snell’s Law. Distribute the Cycloid Cyclone Investigation sheet. Examine the navy 
path, which is an approximation of the pink curve using line segments. Snell’s Law 
says that when you have several equally-spaced line segments and an object 
traveling along the track made by the line segments, the relationship between 
slope, velocity, and distance traveled can be expressed by the following equation:

3.
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This diagram shows the first two segments of the piece-
wise linear approximation on the sheet Cycloid Cyclone 
Investigation. Students will perform the relevant 
calculations on their copy of the sheet and this diagram 
should help you support students in their investigations. 
As you can see on the grid, the value of Δx is 5.57, the 
value of Δy1 is 8, and the value of Δy2 is 3.2. Students can 
use their calculations from the Pre-Activity for the 
relevant velocities over each segment.
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Roller Graphicoaster Post-Activity Two (Continued)

Note: This is a rewriting of Snell’s Law. It relies on the line segments being equally 
spaced. If the segments are not equally spaced, each expression must be multiplied by 
the horizontal distance between the start and end of each segment. Furthermore, 
Snell’s Law in its standard form involves trigonometric functions. This expression of 
Snell’s Law has been adapted to use slope instead of trigonometric functions.

As an extension, you can derive Snell’s law in your class, in any of a variety of ways, 
many of which use calculus; or give it in its usual trigonometric form as 
sin(θ1)/sin(θ2) = v1/v2 and derive the slope-based form above.

You can discuss the components of the equation with your class. Ask, why do you 
think the slope of the segment is important? What happens as the slope of the 
segment decreases? What happens as it increases? What happens as the velocity 
decreases? What happens as it increases? If your class is familiar with these terms, 
you could relate this discussion to direct and indirect variation.

Ask students, what will we have to find to show that the Cycloid Cyclone follows 
Snell’s Law, and is therefore the best track? Work as a class to find the slope of the 
first segment, its length, and the average velocity along the first segment (using the 
motion equations from the pre-activity). Then, address an uphill segment in the 
track. Note that the acceleration due to gravity will be negative when the cart is 
moving uphill. Then, have students work in pairs to apply Snell’s Law to the 
remaining segments of the track. Circulate around the room as they work, helping 
them with the calculations if necessary. If students finish early, they can do similar 
calculations for a different track, and show that it does not follow Snell’s Law.

When several minutes remain, gather students and discuss their work. Ask 
students, how could we make the approximation better? One way would be to 
break it into smaller line segments. As the segments get smaller and there are more 
of them, the track gets more and more smooth. Can you imagine the segments 
getting so small that they basically vanish and make one completely smooth curve 

4.

5.
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Roller Graphicoaster Post-Activity Two (Continued)

with no flat stretches? The curve you get is something called a cycloid. Using 
Snell’s Law, Bernoulli showed that the fastest track between any two points is 
always a cycloid curve.

Finish by explaining to students that this problem is what math is all about: math-
ematicians pose problems and then use the tools they have to solve them, or, in the 
case of the fastest track of a roller coaster, invent new tools like calculus to solve 
the problem.

Extension
If your students have done both post-activities, have them re-visit the solution of  

“Fetch!” Students should draw Franklin’s optimal path on the diagram. Note that it 
is a path composed of two straight lines, one in each medium (beach or water). 
Does Franklin’s path obey Snell’s Law? Why does that make sense? Wrap up with 
an explanation that what students did in the first post-activity amounted to a 
derivation of Snell’s law.

6.



Speedy Paths

When you visit Math Midway 2 Go, you will get to experience the Roller Graphi-
coaster, a roller coaster challenge. One of these six paths is the fastest possible way 
to move the roller coaster from start to finish–which one is it?

In the space below, order the paths from fastest to slowest. Explain your reasoning. 
____________________________________________________________________________________
____________________________________________________________________________________
____________________________________________________________________________________
____________________________________________________________________________________
____________________________________________________________________________________

What factors cause roller coasters to speed up or slow down? Explain what you 
think will make a fast roller coaster track: 
____________________________________________________________________________________
____________________________________________________________________________________
____________________________________________________________________________________
____________________________________________________________________________________
____________________________________________________________________________________



Speedy Paths (Continued)

Use these thoughts about fast and slow roller coaster tracks to design your own 
roller coaster track. Your challenge is to finish as quickly as possible. What will 
your roller coaster track look like?



Linear Laser or Cycloid Cyclone?

How long should each track take? Use the equations below and the diagram of the 
Linear Laser and Cycloid Cyclone to figure it out!

Linear Laser

0

10

20

30

40

10 20 30 40 50 60

50

60

70 80

H
E

IG
H

T
 (

in
 c

e
n

ti
m

e
te

rs
)

LATERAL DISTANCE (in centimeters)

90

70

START

END

(0, 45)

(94.25, 35.57)



Linear Laser or Cycloid Cyclone? (Continued)

Cycloid Cyclone
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Roller Graphicoaster Recording Sheet

A
BC

D

E

F

Key

 Linear Laser  ______ seconds

 Cosine Coaster  ______ seconds

 Parabolic Plunge ______ seconds

 Cubic Express  ______ seconds

 Hanging Halfpipe ______ seconds

 Cycloid Cyclone ______ seconds

A

B

C

D

E

F



Fetch!

My dog Franklin likes to go to the beach and play fetch. Here’s the game we play: 
Franklin and I start at a spot on the beach. Then, I throw the ball at a diagonal 
from our starting point into the water. Franklin fetches it. Doesn’t that sound like 
fun? Now, Franklin’s goal is to get to the ball as fast as possible. He doesn’t care 
about how far he goes or how much energy he expends – he just wants that ball as 
soon as possible. If Franklin can run at 6.5 meters/second and can swim at 0.9 
meters/second, how far should he run and swim to get to the ball in the shortest 
amount of time?



Cycloid Cyclone Investigation

Cycloid Cyclone
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Does the Cycloid Cyclone obey Snell's Law?  Use the diagram and equation below 
to find out.


